\$1.00 per copy
Please support your computerJOIN CATS!

\square

Science Fair Students.......... 2
Duel..................................... 5
Celestial Mechanics............. 8

More formulas for Uu-Calc 2068. 9
Input prompts with variables....9
Cryptogram

From the Editor=...
Welcome our New Officers!
New officers of the club were elected at last month's meeting. They were: Tom Bent, President; Hank Dickson, lIst UP: Harry Harrison, 2nd UP; and Ruth Fegley, Treasurer. I'll continue on as Editor; with Sarah Fisher and Bob Curnutt on the production end. We are still looking for a volunteer to supervise duplication of the club library tapes.

We'11 need support from all of you to make the next year a success. If you have an idea for a meeting presentation, let Tom or Hank know. If you have an idea for an article, send it in! I want to especially thank Roald Schrack and H.E. Weppler for their consistent fund of new and interesting articles.

Prepare for August!
I'11 be leaving town by July 18: articles for the August issue will have to reach me at least five days before that.

Last month's Meeting, and Next: In addition to electing officers, we had an illuminating trio of talks by science fair contestants that had used Computers in their projects. Further details on page 2 . I haven't talked with Tom to find out just what he's planning for next month; but I do know one thing - our meeting hall is

AIR CONDITIONED! There'11 be a cool space for you to come and join us and keep the spirit alive!

New Product Announcements:
If you have been going around in circles trying to hook up that unknown printer, LOGICAL SOLUTIONS of Gaithersburg (301) 977-1510 may be able to help build a cable to hook it up. They have a library of 1500 pin-outs for various devices.

CURRY COMPUTER has sent fur then details on their line of Pyramide software, to wit, QL PEINTRE. This program allows you to obtain graphics on the GL that rival those of the other 68000 machines. Also by Pyramide, UROOM, a graphic racetrack game, and OTHELLO. Also news of TECHNIQL, a CAD package for the $Q L$, and ASSEMBLER WORKBENCH, a m/c assembler/ disassembler/ debugger. (602) 978-2902

TAS BAM User's Group has sent out news of a major upraade of Tom Wood's PRO FILE. With his permission, it has been adapted to the Rotronics Wafa-drive. The upgrade is available from Mr. George Fetherman, 5956 45th Ave. North, St. Petersburg FL 33709 for \$11.00 incl shh. (813) 546-4278 This is the upgrade only - full documantation is availabe from Tom
C.A.T.S.

Wood.

1 July

Science Fair Students Spark Fancy of CATS

Featured at the June CATS meeting were three area science fair participants who described to the group how they successfully used small computers. in carrying out their respective science projects.

These gifted young students brought their displays, set up alt their equipmnent and gave extremely welz-organized presentations, just as though they were addressing a large and friendly battery of judges.

JOSHUA ENGEL, Eleanor Roosevelt HS, Greenbelt; MD "An Easier PI"

Joshua became interested last summer in the mathematical abstraction known as "PI", and decided to make it the subject of his science fair project.

He described to us the refinement of pi from its earliest biblical reference down to the work of David Bailey who, at NASA*s Ames Research Center last year, calculated $p i$ to 29,360,128 places.

In searching through area libraries, including school, public, and U. of Maryland, he found volumes of material about pi, including some learned journals devoted to almost nothing else.

He also located 16 different "series" of pi, which "converged" with varying degrees of speed and ease. Thus some were "easier" than others, especially those he code-named "Pi-15" and *Pi-16".

He developed a computer program for his Osborne using the "C* language, and also implemented it using "C-Basic", which offered up to eleven decimal places for convergence. His Osborne was calculating some of these convergences while he was speaking.

Asked what standard for $p i$ is used in space exploration, he replied that the classic 22/7ths is often good enough. During Voyager's probe of Uranus, using pi to 6 decimal places got the craft within 5 feet of its target. Using pi to 35 decimal places will, in calculating the circumference of the solar system, be acccurate to 1 one-millionth of the diameter of a proton, he pointed out.

When queried what he liked most about his subject, Joshua replied, P Pi is an irrational number, and I identity strongly with irrationality."

The cats members were fascinated.
We were also delighted to have as our guests the fathers of two of the exhibitors: Mr. AARON ENGEL and Mr. GEORGE L. WOOLEY, Sr. who, as it turns out, have been with their sons in the same Boy Scout troop for many years!

GEORGE L. WOOLEY, Jr., Kenmoor MS, Landover, MD "A Traptickovic Network"

As Gearge explained, he happens to live in a house with a whole lot of small computers. Sa a natural thing to attempt for his science fair project was to try to make all of them communicate with each other.

He pulled together the fallowing machines: (1) TRS-80, (2) Apple II, (3) Timex/Sinclair, (4) Commodore PET, and (5) VIC-20.

His purpose was to try to send and receive a simple message between all of them without using phone lines or modems.

He started digging into the the kinds of signals generated by the five computers in terms of timing, pitch and duration. He also examined these signals using an occilliscope.

After his empirical investigations, he concluded the two best candiates for computer-to-computer communication were the PET and the VIC-20. Of the others, the next closest was the TRS-80. He found that these three share the same general family of signals suitable for audio interfacing.

George proposed that for connecting a group of computers in the same schoal building, the most practical thing would be to have tape-oriented devices at each end to capture messages in a non-tended mode.

The audience was genuinely amused when George explained, for the second time, what a
"Traptickovic* network was: the eryptographic use of the letters in all the machines he used.

Next year George will be in the Bth grade.

 fficers \& Functionaries

President
Vice-President Vice-President Treasurer

N/L Editor N/L Production

Corresp Secy.

Tom Bent
Hank Dickson
Harry Harrison
Ruth Fegley
Mark Fisher
Sarah Fisher
Bob Curnutt Mike Cohen

cantributors

Hank Dickson	H.L. Schaaf
Mark Fisher	H.E. Weppler
Roald Schrack	George White

Deadlines

Newsletter
Meeting Date
July 12
August 9
September 13
October 11

FOR SALE

JACK HYSONG, PHONE (301) 7743934

DAVID KULP, W.T. Woodson HS, Fairfax, VA
*Acoustical Testing, An Engineering Experiment"
David's science fair project was inspired by the rebuilding of his school auditorium which created such bad acoustics that an acoustical engineer had to be called in to salvage it.

David is a percussionist in his school's music organizations, and is acutely aware of the absence or presence of good acoustics.

He posited it should be practical to put together a mathematical model which could predict what a finished room (or assembly hall) would produce in terms of acoustics.

He researched what constitutes acoustical acceptability, talked with four protessionals in the field who deemed his undertaking unique, and set out.

Using his Sinclair 2068 and a 2040 printer, he created a singularly outstanding program. He found the key to the architechtual problems in this area were encapsulated in the factor called "reverberation time*.

The program he developed uses environmental factors such as wall surface as well as the presence of chairs, carpeting, and people. After the 2068 operator has introduced these tactors via non-hostile menus, bar charts can be produced depicting the resultant range of sound.

David also devised a LOGO-like language to produce a drawing of the room being analyzed which plots the movement and reverberation of the sound waves $\mathbf{e s}$ though they were demonstrating fluid dynamics.

David says that after seven months, he is glad to set this project aside and move on to other things. He doesn't know if his future portends engineering or computers, although he certainly has displayed skill at both.

David will be a senior next year.

At the conclusion of the presentations, the guests were presented small mementoes of their visit and were, by acclimation, voted into honorary membership in CATS. David Kulp, already a member of CATS, will have his current membership generously extended.
---C. D. Dickeon

CRYPTOGRAM Solution:

LNIINZANOJ AT7V 3d S. Il ing' a31ndwo3 3H1 NO SW3า80ぬd anod

C.A.T.S.

DUEL

By Mark Fisher

Prologue:

Long, long ago, in a city far away... A young man read of an intriguing algorithn for simulating motion on graph paper. This article was written by Martin Gardner in The Scientific American. At the tine, it had been implemented on college nainframes in the form of a race track gane, but the real interest was that anyone could implenent it using nothing more than a pencil and graph paper.

As the young man was then going to Cal , and had nothing better to do, he extended the rules to simulate a battle between two ships in space. Unfortunately, the rules, while clear, were complex; and few people could naster them well enough to see the elegance of the gane. The young man soon learned that it was nost interesting as a solitaire game, and gradually found other things to interest him....

In 1978, every Radio Shack in the country was displaying a conputer that anyone could own. But what use was it? I couldn't think of anything that would justify $\$ 400.00 \ldots$

In 1982, Timex put on its push for the TS 1000 . Advertising leered out of all sorts of magazines, and real examples began to appear in local stores. It became obvious that what had seemed ridiculous claims for the 2×81 were true - and at under $\$ 100.00$! I thought of that Spacewar gane I'd fiddled with, and realized that if I programed the rules into the computer, I wouldn't have to educate each person about addition of vectors before they could play the game. And so, mainly for that reason, I bought one.

Readers of this $\mathrm{n} / 1$ nay be aware that l've had a few other projects that developed after 1 got the 1000 . In the meantine, I becane confortable with BASIC and nachine code. Graphics, data handling, even animation might be needed to implement Spacewar. Slowly, as other projects waxed and waned, I built up an idea of what I wanted to do with the game.

The result is DUEL. It's not all I could wish for; I would like to see versions that allowed real-time movenent, or that allowed two separate computers, linked through a MODEM, to control the 'ships' in the game; but it's an engrossing introduction to the basic idea.

The Progran

DUEL uses a nunber of the specialized abilities of the TS 2068, and a few tricks that speed up some of the BASIC. 1. Character arrays are used to store the coordinate sequences that keep track of the ships and missiles. This allows a single string slicing operation to shift the values to their new positions for each move, rather than a FOR-NEXT series of transfers.
2. DEF NN is used to quickly nove numerical values out of the character array where they are stored.
3. ON ERR is used for two purposes: To allow the plotting of vectors that go off the screen without disrupting progran flow, and later, to allow the 2068 to recover if a division by zero is encountered in calculating closest approaches.
4. STICK is decoded in an unusual way. As the bit values returned by STICK describe the position of the joystick, I POKE the value returned by STICK into address 16384 (which just happens to be the first byte in the display file), thus setting or resetting the first eight pixels of the d_file. I then use POINT to pick up the individual pixel values.
5. Mode OVER 1 is used. This allows me to erase PLotted lines by re-PLOTting them.

Progran flow
On RIN, the ON ERR and DEF FN flags are set, then the program jumps to the main title section ($8000-8290$). At this time data is initialized, and an option to view further instructions ($8600-8830$) is given. Following that, the operator has a choice of one or two joysticks. If (1) is pressed, both ship \#1 and ship \#2 are controlled by stick 1. If (2) is pressed, stick 1 controls ship $\| 1$ and stick 2 controls ship . 2. Both the initialization and instructions are in high BASIC to speed up the operation of the main loop.

The progran then cycles through the main loop (1000-1120), making excursions to the various subroutines as needed. The subrout ine NEARMISS ($3000-3090$) was developed from formulas generated by Murray Barasch. In it the motion of two bodies is examined to see if they have reached a point of closest approach or not. 1 don't pretend to understand why it works.

The actual points of operation of the program are pretty well described in the REM statenents, I needed them to keep track of what I was doing as I developed the progran. Line nunbers are regular because of the renumbering routine c90009120). The me referred to in line 1100 and the SANE-LOAD section (9610-) is the AERCO print driver. All functions of the program are in BASIC, and all references to the print driver can be left out.

If you get this going, let me know. I'd like to know haw far my baby gets.

MF

Ship \#2 was danaged two moves ago. As seen in the upper right corner, danage was 3. If danaged, a ship cannot maneuver, but it can still fire missiles. Danage is reduced one point per move. The dumbell shape records the positions of the missile and ship when the missile detonated. (Ship and nissile tracks over four noves old are erased for clarity.)
 20 REM by Mark Fisher, (c) 1986 Math by Murray Barasch 30 ON ERR GO TO 9500
40 DEF FN $v(a, b, c)=C O D E$ ase (a, b, c); REM Value
50 DEF FN $d(c)=F N \quad v(a, b, c)-F N \quad v(a, b, c+2)$
6060 TO 8090
100 REM * Get Coordinates when
110 LET $x=F N v(a, b, b):$ LET $y=F N v(a, b, 7)$: LET $o x=F N v(a, b, 8): L$
ET $o y=F N$ $\cup(a, b, 9)$
120 LET $d x=x-0 x$: LET $d y=y-0 y$
130 RETURN

310 LET $p x=0$: LET $p y=0$; REM Pointer x, y
320 POKE 16384, STICK (1,r)
330 LET $p x=p x+5 x(\langle$ POINT $(4,175)$ AND $p x<2$ AND $p x+x<=254)-($ POINT $(5,175)$ AND $p x>-2$ AND $x-p x\rangle=1)$)
340 LET py=py+sx(<POINT $(7,175)$ AND $p y<2$ AND $p y+y<=173)-($ POINT
$(6,175)$ AND py $\gamma-2$ AND $y-p y)=2$))
350 PLOT x, y; DRAN $8 * p x / 5,8 * p y / 5$
360 LET ex= STICK $(2, r)$
370 PLOT x, y : DRAW 8 xpx/s,8xpy/s
380 IF ex=0 THEN 60 TO 320
390 RETURN

1010 FOR $a=1$ TO 2: IF $q \$=2$ " THEN LET $r=a$
1020 INK $\mathrm{a} * 2+3$
1030 IF $\mathbf{a}(a, 1,3)={ }^{*}$ COPY * THEN GO SUB 2500: LET $p x=0$: LET $p y=0$
: 60 T0 1090: REM ship gone but missiles active
1040 IF a $\$(0,1,3)={ }^{*}$ COPY 'AND $\$(0,2,1)={ }^{*}$ COPY AND a $\$(0,3,1)=$ - COPY * THEN 60 T0 end: REM other ship gone and no nissiles

105060 SUB 2000: REM get missile firing orders
106060 SUB 2500: REM nove \& update nissiles
1070 INK $3 \times 2+2$
108060 SUB 4000: REM get ship nove
1090 GO SUB 4500: REM Move ship
1100 IF INKEY $=$ =' 5 " THEN RANDOMIZE USR 64628: REM copy screen
1110 LET oca: NEXT a
112060 TO 1000
 2010 LET $b=1: 60$ SUB 100: IF a $3(a, 1,2)=$ CHR 0 OR $\mathrm{as}(\mathrm{a}, 1,3)={ }^{\circ}$ COP Y : OR a $\$(0,1,3)={ }^{\text { }}$ COPY = THEN RETUPN: REM find parent ship

2030 LET $5=1: 60$ SUB 300: REM s=step size
2040 PRINT 1 ;AT 0,0;,
2050 IF NOT $\operatorname{FN} \cup(a, 1,2)$ OR ($p x=0$ AND $p y=0$) THEN RETURN : REM No missile fired
2060 LET as (a, 1,2)=CHR (FN $\cup(a, 1,2)-1)$
2070 IF as (a, 2,1$)=$ CHR 255 THEN 60 TO 2100: REM fire ${ }^{2} 2$
2080 IF as $(a, 3,1)$) CHR 255 THEN LET $b=3$: LET tx=0: LET ty=0: p
LOT x, y : 60 SUB abort: REM if two other, abort 3
2090 LET $a \$(a, 3)=a \$(a, 2)$
2100 LET $a \$(a, 2)=$ CHR $8+$ CHR $(p x+3)+$ CHR $(p y+3)+a t(a, 1,4$ T0 $): R$ EM Fuel, x\&y aim, and past novement
2110 RETURN

2510 LET $\mathrm{a}=0$: LET $\mathrm{b}=1$: 60 SUB 100: LET $\mathrm{a}=$ (NOT $\mathrm{a}-1$) +1 : LET $\mathrm{sx}=\mathrm{x}$:
LET $s y=y$: LET $s 0 x=0 x$: LET $s 0 y=0 y$
2520 FOR $b=2$ TO 3: 60 SUB 100: IF $a(a, b, 1)=$ ' COPY *THEN 60 TO

2620: REM If missile is inactive, skip update
2530 IF NOT PN $v(a, b, 1)$ THEN LET $a \leqslant(a, b, 2$ TO 3)=CHR $\$ 0+$ CHR $\$ 0:$ REM if no fuel, no accel
2540 LET $t x=\{$ RN $u(a, b, 2)-3) * 5+d x$: LET $t y=($ RN $v(a, b, 3)-3) * 5+d y ; L$ ET $n x=t x+x$: LET $m y=t y+y$; REM Get new points..
255060 SUB nearmiss
2560 PLOT x, y : ORAU $t x$, $t y$
2570 IF $t<=1$ THEN 60 SUB check: 60 SUB abort: 60 TO 2620
2580 IF $n x\rangle 253$ OR $m \times<2$ OR ny>173 OR ny<2 THEN 60 SUB abort: 60
TO 2620: REM and check that it is not off screen
2590 IF $a \$(a, b, 12$ TO 15) < 3 a $\$(a, 1,12$ TO 15) THEN PLOT FN $\cup(a, b, 1$ 4), PN $v(a, b, 15)$: DRAW FN $d(12)$, $\mathrm{FN} d(13)$: REM If track is differe nt from ship, erase track
2600 LET $a \$(a, b, 8$ TO $)=a \$(a, b, 6$ TO): RES nove track data
2610 LET as (a,b,4 TO 7)=CHR\$ ABS dx+CHR\$ ABS dy+CHR $n x+$ CHRs ny;
IF a\$ $(a, b, 1)$)CHR 0 THEN LET as $(a, b, 1)=$ CHR (CODE $a \$(a, b, 1)-1)$
: REM Update fuela nex points
2620 NEXT b
2630 LET $b=1$: RETURN

2810 FOR $c=14$ TO 8 STEP -2: REM Erase aborted nissile
2820 IF a $(a, b, c-2$ TO $c-1)\rangle a \$(a, 1, c-2$ TO $c-1)$ THEN PLOT FN v $(a, b, c), F N v(a, b, c+1)$: DRAN FN $d(c-2), F N d(c-1)$
2830 NEXT c
2840 LET $\mathbf{a} \$(a, b, 1)={ }^{*}$ COPY -
2850 PLOT x, y : DRAW $t x$, $t y$
2860 RETURN

3010 LET ncos $=(t x) /(\operatorname{SQR}((t x) *(t x)+(t y) *(t y)))$
3020 LET $\operatorname{msin}=(t y) /($ SQR $((t y) *(t y)+(t x) *(t x)))$
3030 LET $5 \cos =(5 x-50 x) /(S Q R((50 x-5 x) *(50 x-5 x)+(50 y-5 y) *(50 y-5 y)$
))
3040 LET $55 \mathrm{in}=(5 y-50 y) /($ SOR $((50 y-5 y) *(50 y-5 y)+(50 x-5 x) *(50 x-5 x)$
))
3050 LET $n v=$ SOR ($t x * t x+t y * t y$)
3060 LET $5 v=$ SQR ($(50 x-5 x) *(50 x-5 x)+(50 y-5 y) *(50 y-5 y))$
3070 LET $t=-((x-50 x) *((n v$ ancos $)-(5 v * s c o s))+(y-50 y) *(($ mv*nsin $)-(5$
v*ssin)))/((nv*nv+5v*5v)-(2*nu*su*(ncos*5cos+msin*sin)))
3080 IF t<1 THEN LET tx=tx*t: LET ty=ty*t
3090 RETURN

3210 LET $m x=t x+x$: LET $n y=t y+y$
3220 LET $5 x=50 x+t \times 5 v * 5 \cos$
3230 LET $5 y=50 y+t * 50 * 55$ in
3240 LET $d x=5 x-n x$: REM Dist nissile to opposing ship
3250 LET dy=sy-ny: REM Dist nissile to opposing ship
3260 IF ABS $d x 18$ AND ABS $d y<8$ THEN ORRA $d x$, dy; CJRCLE $5 x, 5 y, 3$;
60 SUB boon
3270 RETUPN

3510 LET a $\$(0,1,3)=$ CHR (${ }^{2} N \quad \cup(0,1,3)+2+(A B S \quad d x(4)+\langle A B S \quad d y<4))$

 : PAUSE 200
3530 LET $\sigma(0)=d(0)+F N \cup(0,1,3)$; PRINT OVER $0 ; A T 1,2 ; d(1)$;TAB 28 ; d(2): IF FN $v(0,1,3)<4$ THEN RETURN
3540 FOR $i=2$ TO 10 STEP 3: CIRCLE $n x, n y$, i : NEXT i
3550 PRINT OUER $0 ; A T$ 1,7;" Ship ";0;" destroyed ": IF a $(0,1,3)$〈 \rangle^{*} COPY * THEN LET $K(a)=k(a)+1$

3560 LET $\mathrm{a} \$(0,1,3)={ }^{*}$ COPY *
3570 IF $3 \$(0,2,1)={ }^{\prime}$ COPY * AND a $(0,3,1)={ }^{8}$ COPY " THEN 60 TO en d: REM if no active missiles, stop.
3580 RETUPN

4010 GO SUB 100: REM find parent ship

4030 IF $a(a, 1,1)=$ CHR 0 OR as $(a, 1,3)$ CHR 1 THEN PAUSE 80: LET $p x=0$: LET $p y=0$: RETURN : REM if danage or no fuel, no accel
4040 LET 5=2: 60 SUB 300: LET $p x=p x / 2:$ LET $p y=p y / 2:$ REM coarser step than missile
4050 RETURN

4510 PLOT FN $\cup(a, 1,14), \mathfrak{F N} \cup(a, 1,15)$: DRAW FN d(12), $\mathfrak{F N} d(13)$: CIR
CLE FN $\cup(a, 1,6)$, FN $\cup(a, 1,7), 2$: REM erase track
4520 IF $a(a, 1,3)=$ " COPY " THEN LET $a \$(a, 1,8$ TO $)=a \$(a, 1,6$ TO)
: 60 T0 4620
4530 LET $m x=p x * 5+d x+\mathbb{P N} v(a, 1,6)$: LET $m y=p y * 5+d y+\mathcal{F N} v(a, 1,7)$; REM Get new points.,
4540 LET $a(a, b, 1)=$ CHR $($ CODE $a \$(a, b, j)-5 *(A B S p x)$ AND CODE $a \$(a$, $b, 1$))
 $, b, 1)$): REM reduce fuel if burned
4560 IF FN $\cup(a, b, 3)$)O THEN LET \quad a $(a, b, 3)=$ CHR $($ CODE $3(a, b, 3)-1$): REM reduce danage
4570 IF $n x\rangle 253$ OR $m x\langle 3$ OR $m y>173$ OR $m y<3$ THEN LET $3(a, 1,3)=$ CHR \$ 4: LET O=a: GO TO boom: REM and check that it is not off scree n
4580 LET $d x=A B S$ (FN $v(a, 1,6)-\mathcal{F N} v(0,1,6))$: REM Dist to opposing 5hip
4590 LET $d y=A B S$ (FN $v(a, 1,7)-$ FN $v(0,1,7))$: REM Dist to opposing ship
4600 LET $a \$(a, 1,4$ TO $)=$ CHR $d x+$ CHR $d y+$ CHR $m x+$ CHR $m y+a s(a, 1,6$ TO)
4610 PLOT FN $v(a, 1,8)$, FN $v(a, 1,9)$: DRAN FN $d(6)$, FN $d(7)$: CIRCLE
FN $\cup(a, 1,6), F N \cup(a, 1,7), 2$
4620 RETURN

8010 ONER 1: BORDER 0: PAPER 0: INK 7: CLS
802060 SUB 8500
8030 DIM a\$ $(2,3,15)$: DJM K(2)
8040 DIM $d(2)$: LET $x=0$: LET $y=0$: LET $b=1$: REM $x, y=$ screen coord, b =ship or missile select flag
8050 LET $\mathrm{dx}=0$: LET $\mathrm{dy}=0$: LET $0=2$: REM $x \notin y$ movement from last pos ; $0=0$ ther player
8060 RESTORE 8100: FOR $\alpha=1$ TO 2: FOR $c=1$ TO 15
8070 READ x
8080 LET $\mathrm{a} \$(\mathrm{a}, 1, \mathrm{c})=$ CHR x
8090 NEXT $6:$ NEXT a
8100 DATA $250,10,0,255,255,3,87,3,87,3,87,3,87,3,87$: REM ship \#1
8110 DATA $250,10,0,255,255,252,87,252,87,252,87,252,87,252,87: \mathrm{R}$ EM ship \#2
8120 FOR $b=2$ T0 3
8130 LET $a \$(1, \mathrm{~b})=$ CHR $255+\mathrm{a} \$(1,1,2$ T0): LET $\mathrm{a} \$(2, \mathrm{~b})=$ CHR $255+\mathrm{a} \$$ (2,1,2 TO)
8140 NEXT b
8150 LET abor $t=2800$

8160 LET nearniss=3000
8170 LET check=3200
8180 LET boonf 3500
8190 LET end=9560
8200 PRINT $1 ;$ AT 0,$0 ;^{\prime}(1) n s t r u c t i o n s, ~(1)-(2)$ Sticks" ; ;,: PAUSE 0: LET q \$=1NKEY
8210 IF NOT ($q \neq{ }^{*} 1^{\prime \prime}$ OR $q \neq=^{\prime 2} 2^{\prime \prime}$) THEN 60108600
8220 CIRCLE 252,87,1: CIRCLE 3,87,1: PLOT 3,3: DRAW 249,0: DRAW 0,169: DRAN $-249,0$: DRAW $0,-169$
8230 PRINT AT 1,2;d(1);TAB 28;d(2): LET $b=1$: FOR $i=1$ TO 2
8240 FOR $\mathrm{a}=1$ TO 2
825060 SUB 100: READ px: READ py
8260 DATA $1,0,-1,0,1,0,-1,0,1,-1,-1,1,1,-1,-1,1$
827060 SUB 4500
8280 NEXT a: NEXT i
829060 T0 1000
 8510 PRINT AT 2,10;"解兹********* Duel *

8520 PRINT AT 5,$15 ;$ "by", Mark Fisher","
1985"": You are fighting a space duel. Each ship has 10 missi les and equal fuel."
8530 PRINT " Missiles have proximity fuses- they will explode i f they pass within 8 units."
8540 PRINT " If damaged, you cannot change course, but you can still fire missiles."
8550 PRINT " If you go out of bounds, you will be destroyed." 8560 RETURN
 8610 CLS : PRINT " Joysticks" "Joysticks control direc tion of thrust of ships and missiles."
8620 PRINT "Actual direction is the functionof total accelerati on applied tothe vehicle."
8630 PRINT "The missiles are aimed through 16 points:"
8640 DATA $2,0,2,-1,2,-2,1,-2,0,-2,-1,-2,-2,-2,-2,-1,-2,0,-2,1,-2$,2,-1,2,0,2,1,2,2,2,2,1
8650 RESTORE 8640: FOR $i=1$ TO 16: PAUSE 5: PLOT 40,60 : REAO $x: R$ EAD y : DRAN 10*x, $10 * y$: NEXT i
8660 PRINT AT 18,$0 ;$ "And ships are ained through 8 points:"
8670 DATA $1,0,1,-1,0,-1,-1,-1,-1,0,-1,1,0,1,1,1$
8680 RESTORE 8670: FOR $i=1$ TO 8: PAUSE 10: PLOT 210,60: READ x:
READ y: DRAN 10*x, 10 *y: NEXT i
8690 PRINT "Press FIRE to enter desired vec-tor.";
8700 PAUSE 100: PRINT ${ }^{4}$;AT 0,0;"Try it now, using STICK 1. Pres 5 FIRE for more:"
8710 CIRCLE $130,60,3$: LET $r=1$: LET $s=1$: LET $x=130$: LET $y=60$; 60 SUB 300
8720 CLS : PRINT "Aining nissiles:"/"1) If ain vector is not p lotted, a missile will not be fired. To skip missile firing , press FIRE without moving stick."
8730 PRINT "2) A ship may only maintain 2
hird is fired the oldest missile uill be
8740 PRINT "3) Initial missile direction is e ship's motion, added to the missile
8750 PRINT ${ }^{\text {14 }}$ 4) Missiles will be aborted when
missiles: If a t aborted."
deternined by th aim vector." they no longer a pproach target."
8760 PRINT $1 ; ;^{\prime}(P)$ to play, (ENTER) to continue": PAUSE 0: LET q s=INKEY: IF q*="p" THEN GO TO 8040
8770 CLS : PRINT "Ships"". Ship speed is built up by suc- cessi
ve foreward accelerations. If you accelerate five tines forew ard, "
8780 DATA $150,10,0,255,255,30,87,30,87,30,87,30,87,30,87$: REM 5h ip 1
8790 RESTORE 8780: FOR $c=1$ TO 15: READ x : LET a $\$(1,1, c)=$ CHR x : NEXT c
8800 LET $a=1$: LET $o=2$: LET $b=1$: FOR $i=1$ T0 5: 60 SUB 100: LET $p x$ =1: LET py=0: G0 SUB 4500: NEXT i
8810 INPUT "Press ENTER"; q \$: PRINT $"$ - it will take five moves t 0 return to a stop."
8820 LET $p x=-1$: FOR $i=1$ T0 5: 60 SUB 100: G0 SUB 4500: NEXT i
8830 GO TO 8040

9010 INPUT "Start *;5tart
9020 INPUT "End ";end
9030]F end $\rangle=9000$ THEN LET end $=9000$
9040 INPUT "Start renumber using "in
9050 LET $x=$ PEEK $23635+256 \times$ PEEK 23636
9060 IF PEEK $x * 256+$ PEEK $(x+1)$ <start THEN 60 TO 9110
9070 IF PEEK $x * 256+$ PEEK $(x+1)$) $=$ end THEN STOP
9080 POKE x, INT ($n / 256$)
9090 POKE $x+1, n-$ PEEK $x * 256$
9100 LET $n=n+10$
9110 LET $x=x+4+$ PEEK $(x+2)+$ PEEK $(x+3)$
912060 T0 9060

9510 ON ERR RESET
9520 IF PEEK 23739=21 OR PEEK 23739=9 THEN 60 TO 9560: REM repl
ay?
9530 IF PEEK 23739=6 THEN LET $t=1$
9540 ON ERR GO TO 9500
9550 GO TO PEEK $23736+256$ *PEEK $23737+1$
 9570 PRINT AT 3,$8 ;$ "Score is "gk(1);" to "jk(2);TAB 8;"Play again ? $(y / n)^{\prime}$
9580 IF INKEY $\$={ }^{1} y^{\text { }}$ THEN 60 TO 8040
9590 IF JNKE $\%={ }^{\prime}{ }^{n}$ " THEN STOP
960060 TO 9580

9800 CLEAR 64255: LET $p=64261$: POKE 26704,INT ($p / 256$): POKE 2670 $3, \mathrm{p}$-(INT ($p / 256$)*256): LOAD "CODE
9810 RIN
9900 CLEAR : SANE "duel" LINE 9800: SANE "prcode"CODE 64256,1111 9910 PRINT "reuind and verify:"': VERIFY "duel": VERIFY "prcode ${ }^{9}$ CODE
9999 INK 7: LIST 2500

As shown, ship $\# 2$ has now been destroyed. Ship $\|$ nust still evade the two missiles fired by $\# 2$, however.

Your One-stop Electronic Parts Store

Full line electronic components and test equipment.

Parts and equipment
for the radio amateur and enthusiast.
Reasonable prices.
Credit terms available for recognized companies.

```
C.A.T.S. > Jul.Y
```

CELESTIAL MECHANICS ON THE 2068

The Halley's comet code inspired me to examine celestial mechanics further. The Halley code was based on the known elliptical path of the comet. Newton showed that this elliptical path was caused by the inverse square law of gravitational attraction. That is, the gravitational force F between any two bodies is of the form:
$F=g * m 1 * m 2 /(r * r)$ where the m 's are the masses of the two bodies, g is the gravitational constant and r is the distance between the bodies. In this code one of the masses represents the sun, ms. The other mass can represent a satellite of the sun, a planet, a comet, or an interloper from outside our solar system. If the satellite is "captured" by the sun and cannot escape, the orbit is an ellipse; if the satellite can escape, then the orbit is a hyperbola. Other force laws will result in different orbits.

In this code you choose the starting position and velocity, and the satellite will then describe an orbit determined by the inverse square law force. When the satellite is nearest the sun the total energy is calculated. A "+" or "-" is written in the upper left-hand corner of the screen to indicate the energy of the sattelite. If "+" then the satellite will escape; if "-" it will be captured. I have written the code so that the path is only within the screen boundaries but this could be altered. The starting value of x has been made 127 but this also can be changed to suit your preference.

Note that the space between the succesive orbit positions is further apart as the satellite nears the sun showing that it travels with higher velocity. The code thus also illustrates Kepler's laws of planetary motion. Orbit calculations are very sensitive to accumulated error, so the precision of the 2068 will restrict the accuracy of the calculations. A nice repeating elliptical orbit is ottained for $y=10, v x=1$ but reducing $v x$ to 0.6 will show precessing orbits due to the introduction of errors. Keeping $y=10$ and increasing $v x$ to values greater than 1.42 will result in "escape" hyperbolic orbits with positive energy.

One can change line 125 to represent different force laws such as $1 / r$ and $1 / r^{\wedge} 3$. The accompanying table gives the starting parameters for some sample cases.

Roald A. Schrack
See also "Double Sun" Sept. ' 84 CATS Newsletter

	REM * Gelestiat Mechanits -ET dt=8 LET $m=10$, LET ms $=100$ INPUT "Give 0 to $175: 4$ INPUT "Give Uelocity it LET $t=0$ CLS LET THEEE LET $X=0$ ETRCLE $=0$ CIRCLE IOD, 87,2 LET ax=0. LET $34=0$ LET $X=1=7:$ EET $y=0$ LET $\Gamma 2=(x-190)+(x-190)+4-8$ LET LET T=SER re ET $x=-1+1$ LET fy $=-14-100$) LET ax=fxM: LET 三u=fym LET $v x=4 x+3 x * d t$ LET $x=x+w x \neq d t$ IF t=1 HENGO TO 1BE GO SUE 306 LET ri=T: LET Xi=x: LET yi=
	IF $\times 10$ OR \times, ${ }^{\text {ase }}$ THEN GQ TO
190	IF H 40 OR H:17E THEN GO TO
$\begin{aligned} & 80 \\ & 010 \end{aligned}$	
80	IET y gezedoder ithen eo To
	PRINT " - ": LET $=1:$ RETURN

SAMPLE ORBIT PARAMETERS

Y	X	UX	DT	MS	F	note
10	127	1	3	100	$1 / r^{\wedge} 2$	a
10	127	.6	3	100	$1 / \wedge^{\wedge} 2$	b
10	10	1.1	3	100	$1 / r^{\wedge} 2$	c
25	190	1.3	3	100	$1 / r^{\wedge} 2$	d
50	127	1.0	0.5	10	$1 / r$	e
30	127	0.26	3	100	$1 / r^{\wedge} 3$	f
75	127	1.0	3	100	$1 / r^{\wedge} 3$	9

Notes: for the first two cases use the code as shown. The values of X,DT,MS, and the force law must be changed in the code. a. is a typical ellipse b. is a precessing ellipse c. is a hyperbola d. is a circle e. petal shaped orbits f. double loop 9. hair pin These samples are just what I found in a few minutes. Vary the parameters and see what you find.

ROO4 ：HOCHEC EREB

Hs it comes from TMEXIPSions you can enter igh iarmulas，inen

Inty 3 PDKES are needed in get

From a ${ }^{2} c o l d z$ program with an
 कU

P4＊
BOTD Mun in iaice you imio a new
 For ing formitizs．
道运远 and formiliz is possibié Here＂s houl T diad it

2uis ito besic 2ct bouve，and

 is a^{5} digit munher．

 1 as follows

FOR i＝MmPr TO 54326 STEP－ 1 ：

The formaliz Foiniters aisco have

 타 a $=56$
 Paw
 LET $256+P$ FFE
（Sfretil ：rowicibiretil，IMT （af256）：POUE PEEKCBretis
 were used for ine fiank uU－chle spreadsheet．
coto geob should now iet you
 with your exiscising saza．

There are a couple of ihings制 can do mow ion menhancen the program by having itionform us about our formila room when we use the ing，and some other tidy messages＝Here＇s a isting for ilines I＂yty hanged io suit me．

URRIRELES IN IAPUT PROMPTS

This is not a new discovery but，because it is not mentioned in the emor user manuil．I fect that it is not used as widely as it 雷ight be．

Variables may be included in an Input Frompt by enclosing the prompt in parentheses．That is
 be the value of variable x and
 string value of variable Y事：

倍 is feasible to combine numeric and stiving variabies along with other Eharacters For example，in an accounting program the prompt might be：

 the prompts would appear 玉s：

```
#4 INTEREST REC.
#S DIUIDE*UDS REC.
```

The amounts entered mouid be stored in Bi4 and Etsi pespect－

H－E．Happler

ERYPTOGRAM
YM NOT DEM PS ASHT SMZYLOR ME

PRONS ORR TECH XHEPRSNU ED

MZS LENXCMSH，PCM YM＇U HSORRT

LEDASDYSDM．

I mas able to figure this out by using HOT z on the NU Hemory board built at the saturday chts hardware sessions．That＇s a pouerful combination i！

H．L．Schazf

MARYLAND HAMFEST

AND COMPUTERFEST SPONSORED BY THE

BALTIMORE RADIO AMATEUR TELEVISION SOCIETY SUNDAY, JULY 27, 1986

OPEN FOR SET-UP, SUNDAY AT 6 A.M.
DEALER SET-UP BEGINS SATURDAY AT 2 P.M.
AT THE

HOWARD COUNTY FAIRGROUNDS

15 miles WEST of BALTIMORE just off I-70 at RT. 32 on RT. 144

TOP PRIZES GIANT FLEA MARKET GOOD FOOD REFRESHMENTS

TALK-IN: 146.16/76 147.63/03 146.52

TICKETS: \$4
TAILGATING
TABLES AVAILABLE

INDOOR/OUTDOOR EXHIBIT AREAS COMPUTERS RAIN OR SHINE

FOR INFO \& RESERVATIONS, WRITE: BRATS
P.O. BOX 5915

BALTIMORE, MD 21208

Capitol Area Timex/Sinclair Users' Group
 P.O.Box 725
 Bladensbu:'g, MD 20710

Name
Address \qquad ZIP

P: one

nome Office
:थembersinins - $\$ 16.00$ (Iamil:/individual);make checks parable tc C.A.T.S. If family membership, please list family members participating:

Occupation \qquad
Fam Raiio call sign \qquad
Equipment

LX 80
ai 80
$2 \because 51$
S 1000
IS 200
Kinin size
full kejooard
Printer
type
other interface
-
special interest use for computer: ie, games, han radio interface, business, other, etc.

Languages: Basic
0 her
Machine
io. of years computer experience
Wist committees would you like to serve on?
comments: Where did you hear of C.A.T.S?

Do not write below:

It. Pd.
AMt.
Nembers?ifip No.
Ca.
Ck.
.

- RJシJa! 7 ! I9nd

2910-2ट6\#10E

- S.ezndwos
 pefsevefu! tse so 'ssn 'umo oym esoyt to sfsojefu! ouf 6u!njet

0ilcez OW © 6 Jngsuep 18

है! ठగOJの

CATS Newsletter
P.O. Box 725

Bladensburg MD 20710

QUINTERO, MANUEL A. 301
4375 GREENBERRY LANE
ANNANDALE
UA 22003

COME TO OUR MEETING!
The next meeting of C.A.T.S. will be held on:
Saturday, July 12, 1986

At: New Carrollton Public Library
7414 Riverdale Road (Hwy 410), New Carrollton, MD
If you are not a member of cats, this is the only issue you will recieve Dues $=\$ 16.00$ per year, per family.

